Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 191(3): 1789-1802, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36652435

RESUMEN

The growth-regulating factor (GRF) family of transcriptional factors are involved in the control of leaf size and senescence, inflorescence and root growth, grain size, and plant regeneration. However, there is limited information about the genes regulated by these transcriptional factors, which are in turn responsible for their functions. Using a meta-analysis approach, we identified genes encoding Arabidopsis (Arabidopsis thaliana) zinc-finger homeodomain (ZF-HD) transcriptional factors, as potential targets of the GRFs. We further showed that GRF3 binds to the promoter of one of the members of the ZF-HD family, HOMEOBOX PROTEIN 33 (HB33), and activates its transcription. Increased levels of HB33 led to different modifications in leaf cell number and size that were dependent on its expression levels. Furthermore, we found that expression of HB33 for an extended period during leaf development increased leaf longevity. To cope with the functional redundancy among ZF-HD family members, we generated a dominant repressor version of HB33, HB33-SRDX. Expression of HB33-SRDX from HB33 regulatory regions was seedling-lethal, revealing the importance of the ZF-HD family in plant development. Misexpression of HB33-SRDX in early leaf development caused a reduction in both cell size and number. Interestingly, the loss-of-function of HB33 in lines carrying a GRF3 allele insensitive to miR396 reverted the delay in leaf senescence characteristic of these plants. Our results revealed functions for ZF-HDs in leaf development and linked them to the GRF pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hojas de la Planta/metabolismo
2.
Plant Mol Biol ; 108(1-2): 93-103, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34982361

RESUMEN

KEY MESSAGE: Proper root growth depends on the clearance of TCP transcripts from the root apical meristem by microRNA miR319. The evolutionarily conserved microRNA miR319 regulates genes encoding TCP transcription factors in angiosperms. The miR319-TCP module controls cell proliferation and differentiation in leaves and other aerial organs. The current model sustains that miR319 quantitatively tunes TCP activity during leaf growth and development, ultimately affecting its size. In this work we studied how this module participates in Arabidopsis root development. We found that misregulation of TCP activity through impairment of miR319 binding decreased root meristem size and root length. Cellular and molecular analyses revealed that high TCP activity affects cell number and cyclin expression but not mature cell length, indicating that, in roots, unchecking the expression of miR319-regulated TCPs significantly affects cell proliferation. Conversely, tcp multiple mutants showed no obvious effect on root growth, but strong defects in leaf morphogenesis. Therefore, in contrast to the quantitative regulation of the TCPs by miR319 in leaves, our data suggest that miR319 clears TCP transcripts from root cells. Hence, we provide new insights into the functions of the miR319-TCP regulatory system in Arabidopsis development, highlighting a different modus operandi for its action mechanism in roots and shoots.


Asunto(s)
Proteínas de Arabidopsis/fisiología , MicroARNs/fisiología , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , MicroARNs/metabolismo , Microscopía Confocal , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Transcriptoma
3.
Plant J ; 101(6): 1303-1317, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31659801

RESUMEN

Agrobacterium T-DNA-encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T-DNAs with three slightly divergent 6b genes (TE-1-6b-L, TE-1-6b-R and TE-2-6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE-2-6b, but not 2×35S:TE-1-6b-L or 2×35S:TE-1-6b-R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN-like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN-like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE-2-6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw-D plants. Co-expression of green fluorescent protein (GFP)-tagged TCPs with native or red fluorescent protein (RFP)-tagged TE-6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double-hybrid experiments confirmed 6B/TCP binding and showed that TE-1-6B-L and TE-1-6B-R bind a smaller set of TCP proteins than TE-2-6B. A single nucleotide mutation in TE-1-6B-R enlarged its TCP-binding repertoire to that of TE-2-6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE-2-6B targets the TCP4 DNA-binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE-encoded 6b genes.


Asunto(s)
Agrobacterium/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Arabidopsis/microbiología , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Microscopía Confocal , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Reacción en Cadena de la Polimerasa , Nicotiana/metabolismo , Nicotiana/microbiología , Técnicas del Sistema de Dos Híbridos
5.
Plant Physiol ; 176(2): 1694-1708, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29133375

RESUMEN

The characteristic leaf shapes we see in all plants are in good part the outcome of the combined action of several transcription factor networks that translate into cell division activity during the early development of the organ. We show here that wild-type leaves have distinct transcriptomic profiles in center and marginal regions. Certain transcripts are enriched in margins, including those of CINCINNATA-like TCPs (TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2) and members of the NGATHA and STYLISH gene families. We study in detail the contribution of microRNA319 (miR319)-regulated TCP transcription factors to the development of the center and marginal regions of Arabidopsis (Arabidopsis thaliana) leaves. We compare in molecular analyses the wild type, the tcp2 tcp4 mutant that has enlarged flat leaves, and the tcp2 tcp3 tcp4 tcp10 mutant with strongly crinkled leaves. The different leaf domains of the tcp mutants show changed expression patterns for many photosynthesis-related genes, indicating delayed differentiation, especially in the marginal parts of the organ. At the same time, we found an up-regulation of cyclin genes and other genes that are known to participate in cell division, specifically in the marginal regions of tcp2 tcp3 tcp4 tcp10 Using GUS reporter constructs, we confirmed extended mitotic activity in the tcp2 tcp3 tcp4 tcp10 leaf, which persisted in small defined foci in the margins when the mitotic activity had already ceased in wild-type leaves. Our results describe the role of miR319-regulated TCP transcription factors in the coordination of activities in different leaf domains during organ development.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Curr Opin Plant Biol ; 34: 68-76, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27794260

RESUMEN

Plants have the ability to generate different and new organs throughout their life cycle. Organ growth is mostly determined by the combinatory effects of cell proliferation and cell expansion. Still, organ size and shape are adjusted constantly by environmental conditions and developmental timing. The plasticity of plant development is further illustrated by the diverse organ forms found in nature. MicroRNAs (miRNAs) are known to control key biological processes in plants. In this review, we will discuss recent findings showing the participation of miRNA networks in the regulation of cell proliferation and organ growth. It has become clear that miRNA networks play both integrative and specific roles in the control of organ development in Arabidopsis thaliana. Furthermore, recent work in different species demonstrated a broad role for miR396 in the control of organ size, and that specific tuning of the miR396 network can improve crop yield.


Asunto(s)
MicroARNs/genética , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
7.
Mol Plant ; 7(10): 1533-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053833

RESUMEN

Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery--a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Arabidopsis/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Acetatos/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Recuento de Células , Proliferación Celular/efectos de los fármacos , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genes Reporteros , MicroARNs/genética , Mitosis/efectos de los fármacos , Mitosis/genética , Modelos Biológicos , Datos de Secuencia Molecular , Tamaño de los Órganos/efectos de los fármacos , Oxilipinas/farmacología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
8.
Mech Dev ; 130(1): 2-13, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22889666

RESUMEN

The microRNA (miRNA) miR396 regulates GROWTH-REGULATING FACTORs (GRFs), a plant specific family of transcription factors. Overexpression of miR396 causes a decrease in the GRFs that has been shown to affect cell proliferation in the meristem and developing leaves. To bring further insights into the function of the miR396 regulatory network we performed a mutant enhancer screen of a stable Arabidopsis transgenic line expressing 35S:miR396b, which has a reduction in leaf size. From this screen we recovered several mutants enhancing this phenotype and displaying organs with lotus- or needle-like shape. Analysis of these plants revealed mutations in as2 and rdr6. While 35S:miR396b in an as2 context generated organs with lotus-like shape, the overexpression of the miRNA in an rdr6 mutant background caused more important developmental defects, including pin-like organs and lobed leaves. Combination of miR396 overexpressors, and rdr6 and as2 mutants show additional organ defects, suggesting that the three pathways act in concert. Genetic interactions during leaf development were observed in a similar way between miR396 overexpression and mutants in RDR6, SGS3 or AGO7, which are known to participate in trans-acting siRNA (ta-siRNA) biogenesis. Furthermore, we found that miR396 can cause lotus- and pin-like organs per se, once a certain expression threshold is overcome. In good agreement, mutants accumulating high levels of TCP4, which induces miR396, interacted with the AS1/AS2 pathway to generate lotus-like organs. The results indicate that the miR396 regulatory network and the ta-siRNA biogenesis pathway synergistically interact during leaf development and morphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Hojas de la Planta , ARN Polimerasa Dependiente del ARN , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , Morfogénesis , Mutación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Factores de Transcripción/metabolismo
9.
Nucleic Acids Res ; 40(18): 8893-904, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22772987

RESUMEN

MicroRNAs (miRNAs) are major regulators of gene expression in multicellular organisms. They recognize their targets by sequence complementarity and guide them to cleavage or translational arrest. It is generally accepted that plant miRNAs have extensive complementarity to their targets and their prediction usually relies on the use of empirical parameters deduced from known miRNA-target interactions. Here, we developed a strategy to identify miRNA targets which is mainly based on the conservation of the potential regulation in different species. We applied the approach to expressed sequence tags datasets from angiosperms. Using this strategy, we predicted many new interactions and experimentally validated previously unknown miRNA targets in Arabidopsis thaliana. Newly identified targets that are broadly conserved include auxin regulators, transcription factors and transporters. Some of them might participate in the same pathways as the targets known before, suggesting that some miRNAs might control different aspects of a biological process. Furthermore, this approach can be used to identify targets present in a specific group of species, and, as a proof of principle, we analyzed Solanaceae-specific targets. The presented strategy can be used alone or in combination with other approaches to find miRNA targets in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/química , ARN de Planta/química , Arabidopsis/genética , Secuencia de Bases , Secuencia Conservada , Etiquetas de Secuencia Expresada , MicroARNs/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Alineación de Secuencia , Solanaceae
10.
Development ; 137(1): 103-12, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023165

RESUMEN

Cell proliferation is an important determinant of plant form, but little is known about how developmental programs control cell division. Here, we describe the role of microRNA miR396 in the coordination of cell proliferation in Arabidopsis leaves. In leaf primordia, miR396 is expressed at low levels that steadily increase during organ development. We found that miR396 antagonizes the expression pattern of its targets, the GROWTH-REGULATING FACTOR (GRF) transcription factors. miR396 accumulates preferentially in the distal part of young developing leaves, restricting the expression of GRF2 to the proximal part of the organ. This, in turn, coincides with the activity of the cell proliferation marker CYCLINB1;1. We show that miR396 attenuates cell proliferation in developing leaves, through the repression of GRF activity and a decrease in the expression of cell cycle genes. We observed that the balance between miR396 and the GRFs controls the final number of cells in leaves. Furthermore, overexpression of miR396 in a mutant lacking GRF-INTERACTING FACTOR 1 severely compromises the shoot meristem. We found that miR396 is expressed at low levels throughout the meristem, overlapping with the expression of its target, GRF2. In addition, we show that miR396 can regulate cell proliferation and the size of the meristem. Arabidopsis plants with an increased activity of the transcription factor TCP4, which reduces cell proliferation in leaves, have higher miR396 and lower GRF levels. These results implicate miR396 as a significant module in the regulation of cell proliferation in plants.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Hibridación in Situ , Meristema/citología , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transactivadores , Factores de Transcripción/genética , Factores de Transcripción/fisiología
11.
PLoS Biol ; 6(9): e230, 2008 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-18816164

RESUMEN

Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Senescencia Celular/fisiología , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Oxilipinas/metabolismo , ARN de Planta/metabolismo , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Perfilación de la Expresión Génica , MicroARNs/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , ARN de Planta/genética , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
12.
Dev Cell ; 13(1): 115-25, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17609114

RESUMEN

Many microRNAs (miRNAs) are encoded by small gene families. In a third of all conserved Arabidopsis miRNA families, members vary at two or more nucleotide positions. We have focused on the related miR159 and miR319 families, which share sequence identity at 17 of 21 nucleotides, yet affect different developmental processes through distinct targets. MiR159 regulates MYB mRNAs, while miR319 predominantly acts on TCP mRNAs. In the case of miR319, MYB targeting plays at most a minor role because miR319 expression levels and domain limit its ability to affect MYB mRNAs. In contrast, in the case of miR159, the miRNA sequence prevents effective TCP targeting. We complement these observations by identifying nucleotide positions relevant for miRNA activity with mutants recovered from a suppressor screen. Together, our findings reveal that functional specialization of miR159 and miR319 is achieved through both expression and sequence differences.


Asunto(s)
Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Mutación Puntual , ARN de Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Dev Cell ; 8(4): 517-27, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15809034

RESUMEN

Most plant microRNAs (miRNAs) have perfect or near-perfect complementarity with their targets. This is consistent with their primary mode of action being cleavage of target mRNAs, similar to that induced by perfectly complementary small interfering RNAs (siRNAs). However, there are natural targets with up to five mismatches. Furthermore, artificial siRNAs can have substantial effects on so-called off-targets, to which they have only limited complementarity. By analyzing the transcriptome of plants overexpressing different miRNAs, we have deduced a set of empirical parameters for target recognition. Compared to artificial siRNAs, authentic plant miRNAs appear to have much higher specificity, which may reflect their coevolution with the remainder of the transcriptome. We also demonstrate that miR172, previously thought to act primarily by translational repression, can efficiently guide mRNA cleavage, although the effects on steady-state levels of target transcripts are obscured by strong feedback regulation. This finding unifies the view of plant miRNA action.


Asunto(s)
MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Transcripción Genética , Emparejamiento Base , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Conformación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN de Planta/genética , Reproducibilidad de los Resultados
14.
Plant J ; 36(1): 1-11, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12974806

RESUMEN

A new Arabidopsis meiotic mutant has been isolated. Homozygous ahp2-1 (Arabidopsis homologue pairing 2) plants were sterile because of failure of both male and female gametophyte development. Fluorescent in situ hybridisation showed that in ahp2-1 male meiocytes, chromosomes did not form bivalents during prophase I and instead seemed to associate indiscriminately. Chromosome fragmentation, chromatin bridges and unbalanced segregation were seen in anaphase I and anaphase II. The ahp2-1 mutation was caused by a T-DNA insertion in an Arabidopsis homologue of meu13+, which has been implicated in homologous chromosome pairing during meiosis in Schizosaccharomyces pombe. Our results suggest that meu13+ function is conserved in higher eukaryotes and support the idea that Arabidopsis, yeast and mouse share a pairing pathway that is not present in Drosophila melanogaster and Caenorhabditis elegans.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Segregación Cromosómica/genética , Fosfotransferasas/genética , Secuencia de Aminoácidos , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Cromosomas de las Plantas/genética , Fertilidad/genética , Fertilidad/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meiosis/genética , Meiosis/fisiología , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfotransferasas/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homología de Secuencia de Aminoácido
15.
Nature ; 425(6955): 257-63, 2003 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-12931144

RESUMEN

Plants with altered microRNA metabolism have pleiotropic developmental defects, but direct evidence for microRNAs regulating specific aspects of plant morphogenesis has been lacking. In a genetic screen, we identified the JAW locus, which produces a microRNA that can guide messenger RNA cleavage of several TCP genes controlling leaf development. MicroRNA-guided cleavage of TCP4 mRNA is necessary to prevent aberrant activity of the TCP4 gene expressed from its native promoter. In addition, overexpression of wild-type and microRNA-resistant TCP variants demonstrates that mRNA cleavage is largely sufficient to restrict TCP function to its normal domain of activity. TCP genes with microRNA target sequences are found in a wide range of species, indicating that microRNA-mediated control of leaf morphogenesis is conserved in plants with very different leaf forms.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Procesamiento Postranscripcional del ARN , Proteínas de Arabidopsis/genética , Secuencia de Bases , Secuencia Conservada , Perfilación de la Expresión Génica , Genes de Plantas/genética , MicroARNs/genética , Datos de Secuencia Molecular , Morfogénesis , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...